- 產(chǎn)品描述
果氏巴貝西蟲免疫熒光玻片
Babesia microti IFA Substrate slide
廣州健侖生物科技有限公司
主要用途:用于檢測人血清中的果氏巴貝西蟲IgG/IgM抗體
產(chǎn)品規(guī)格:12 孔/張,10 張/盒
主要產(chǎn)品包括:包柔氏螺旋體菌、布魯氏菌、貝納特氏立克次體、土倫桿菌、鉤端螺旋體、新型立克次體、恙蟲病、立克次體、果氏巴貝西蟲、馬焦蟲、牛焦蟲、利什曼蟲、新包蟲、弓形蟲、貓流感病毒、貓冠狀病毒、貓皰疹病毒、犬瘟病毒、犬細小病毒等病原微生物的 IFA、MIF、ELISA試劑。
果氏巴貝西蟲免疫熒光玻片
我司還提供其它進口或國產(chǎn)試劑盒:登革熱、瘧疾、西尼羅河、立克次體、無形體、蜱蟲、恙蟲、利什曼原蟲、RK39、漢坦病毒、深林腦炎、流感、A鏈球菌、合胞病毒、腮病毒、乙腦、寨卡、黃熱病、基孔肯雅熱、克錐蟲病、違禁品濫用、肺炎球菌、軍團菌、化妝品檢測、食品安全檢測等試劑盒以及日本生研細菌分型診斷血清、德國SiFin診斷血清、丹麥SSI診斷血清等產(chǎn)品。
歡迎咨詢
歡迎咨詢2042552662
JL-FL38 | parkeri立克次體IgG ELISA | R. parkeri IgG ELISA Kit |
JL-FL39 | montanensis立克次體IgG ELISA | R. montanensis IgG ELISA Kit |
JL-FL40 | EB病毒衣殼IgG免疫熒光玻片試劑盒 | EBV Viral Capsid IgG IFA Kit |
JL-FL41 | EB病毒衣殼IgM免疫熒光玻片試劑盒 | EBV Viral Capsid IgM IFA Kit |
JL-FL42 | EB病毒早期抗原IgG免疫熒光玻片試劑盒 | EBV Early Antigens IgG IFA Kit |
JL-FL43 | 鉤端螺旋體IgG免疫熒光試劑盒 | Leptospira IgG IFA Kit |
JL-FL44 | 鉤端螺旋體IgM免疫熒光試劑盒 | Leptospira IgM IFA Kit |
JL-FL45 | Babesia microti IFA Substrate slide | |
JL-FL46 | 果氏巴貝西蟲IgG免疫熒光試劑盒 | Babesia microti IgG IFA Kit |
JL-FL47 | 果氏巴貝西蟲IgM免疫熒光試劑盒 | Babesia microti IgM IFA Kit |
JL-FL48 | 埃立克體IgG微量免疫熒光試劑盒 | Ehrlichia canis Canine IFA IgG Kit |
JL-FL49 | 包柔氏螺旋體菌IgG免疫熒光試劑盒 | Borrelia IgG IFA Kit |
JL-FL50 | 布魯氏菌IgG免疫熒光試劑盒 | Brucella IgG IFA Kit |
JL-FL51 | 里氏新立克次體IgG免疫熒光試劑盒 | Neorickettsia risticii IgG IFA Kit |
JL-FL52 | 弓形蟲IgG免疫熒光試劑盒(檢測貓) | Toxoplasma IFA Feline IgG Kit |
JL-FL53 | 弓形蟲IgG免疫熒光試劑盒(檢測狗) | Toxoplasma IFA Canine IgG Kit |
二維碼掃一掃
【公司名稱】 廣州健侖生物科技有限公司
【】 楊永漢
【】
【騰訊 】 2042552662
【公司地址】 廣州清華科技園創(chuàng)新基地番禺石樓鎮(zhèn)創(chuàng)啟路63號二期2幢101-3室
【企業(yè)文化】
黃斑變性可能是這三種疾病中zui容易用細胞替代療法緩解的一種。使用傳統(tǒng)培養(yǎng)方法和我們的新方法,人類胚胎干細胞和誘導多能干細胞都比較容易產(chǎn)生支撐組織的細胞,即視網(wǎng)膜色素上皮細胞,并可從培養(yǎng)基中直接提取出來。美國已開始用這種細胞進行早期小規(guī)模臨床實驗,其他國家也有類似的實驗計劃。在這些實驗中,研究人員會用細針,將干細胞分化成的色素上皮細胞注射到色素上皮和光感受器細胞層之間,至少替代部分受損組織。
視網(wǎng)膜色素變性的細胞療法尚需進一步改良才能應(yīng)用于人類。與傳統(tǒng)培養(yǎng)方法不同,我們的新技術(shù)可產(chǎn)生一層密集的視桿細胞,適于進行移植,但移植了這種細胞層之后,還需用其他關(guān)鍵手段來提高視力。光感受器細胞不同于簡單的上皮支撐組織,需要整合到眼睛的神經(jīng)回路中;尤其重要的是,光感受器需與另一種感覺細胞——雙極細胞——重新形成細胞連接,而我們尚不知道如何有效形成這種連接。若能成功移植光感受器細胞,將有望使視網(wǎng)膜色素變性患者至少恢復部分視力,甚至使晚期患者受益。
青光眼也許是這三種疾病中zui難用細胞療法治療的。胚胎干細胞培養(yǎng)固然能夠產(chǎn)生這種療法所需的神經(jīng)節(jié)細胞,但胎兒出生后,視神經(jīng)的再生長便會受到抑制。神經(jīng)節(jié)細胞發(fā)出分支,形成視神經(jīng),向大腦傳遞信號,這些分支稱作軸突;迄今為止,人們還沒有發(fā)現(xiàn)誘導其軸突與其他細胞重新連接的方法。
比起現(xiàn)有的組織工程學技術(shù),即將細胞安放到皮膚或膀胱形狀的骨架上,胚胎干細胞分化成的組織顯然要好得多。作為研究者,我們必須謹慎而有耐心地揭示發(fā)育中的細胞所隱藏的奧秘——由單個細胞形成眼睛這樣的復雜器官,究竟經(jīng)歷了怎樣復雜的過程。
在懷孕期間,新的抗原抗體干細胞群產(chǎn)生,與那些參與非抗原抗體的發(fā)育和維持的不同,這些干細胞重塑乳房及在哺乳期間分泌乳汁喂養(yǎng)新生兒。通常情況下,這些干細胞不僅有助于早期重塑事件,而且在乳汁開始生產(chǎn)時關(guān)閉。
Macular degeneration may be the easiest of these three diseases to be alleviated by cell replacement therapy. Both human embryonic stem cells and induced pluripotent stem cells are more likely to produce cells that support the tissues, the retinal pigment epithelial cells, which can be extracted directly from the medium using traditional culture methods and our new approach. The United States has begun to use such cells for early small-scale clinical trials, other countries have a similar experimental plan. In these experiments, researchers injected tiny pieces of fine pigment into the pigment epithelium differentiated from stem cells between the pigment epithelium and the photoreceptor cell layer, replacing at least some of the damaged tissue.
Retinal pigmentosa cell therapy needs further improvement can be applied to humans. Unlike traditional methods of culturing, our new technology produces a dense layer of rod-like cells that are suitable for transplantation, but after transplanting this layer of cells, other critical tools are needed to improve vision. Photoreceptor cells, unlike simple epithelial support tissues, need to integrate into the neural circuitry of the eye; in particular, photoreceptors need to be reconnected with another sensorial cell, the bipolar cells, and we are not yet Know how to effectively form this connection. Successful transplantation of photoreceptor cells will hopefully allow at least partial visual acuity recovery in patients with retinitis pigmentosa and may even benefit advanced patients.
Glaucoma may be the most difficult of these three diseases to be treated with cell therapy. Although embryonic stem cell culture can produce the ganglion cells needed for this therapy, the growth of the optic nerve is inhibited after the birth of the fetus. Ganglion cells branch to form optic nerves and send signals to the brain. These branches are called axons; to date, no method has been found to induce their axons to reconnect with other cells.
It is clearly much better to differentiate embryonic stem cells into tissue than existing tissue engineering techniques, where cells are placed on the skeleton of the skin or bladder. As researchers, we must be careful and patiently revealing the hidden secrets of developing cells - the complex processes experienced by a single cell forming a complex organ such as the eye.
During pregnancy, new populations of antigen-presenting stem cells are produced that, unlike those involved in the development and maintenance of non-antigenic antibodies, reshape the breasts and milk during lactation to feed newborns. Often, these stem cells not only help in early remodeling events, but also shut down when milk begins to be produced.