- 產(chǎn)品描述
MAFB/IGH融合基因t(14;20)探針
廣州健侖生物科技?有限公司
本司長期供應(yīng)尼古丁(可替寧)檢測試劑盒,其主要品牌包括美國NovaBios、廣州健侖、廣州創(chuàng)侖等進(jìn)口產(chǎn)品,國產(chǎn)產(chǎn)品,試劑盒的實(shí)驗(yàn)方法是膠體金方法。
我司還有很多熒光原位雜交系列檢測試劑盒以及各種FISH基因探針和染色體探針等,。
MAFB/IGH融合基因t(14;20)探針
本試劑盒主要用于AML1/ETO融合基因t(8;21)的檢測,里面包括即用型雜交液和DAPI復(fù)染劑。
本試劑盒僅供科研使用。
歡迎咨詢
歡迎咨詢
以下是我司出售的部分FISH產(chǎn)品:
6號(hào)染色體計(jì)數(shù)探針(綠色) |
8號(hào)/20q探針 |
D13S25(13q14)探針(紅色) |
JAK2(9p24)基因斷裂探針 |
FRS2(12q15)基因探針 |
p53/RB1/ATM/CSP12/D13S25/6/6q21/IGH基因探針(七探針 ) |
MYC(8q24),BCL6(3q37),BCL2(18q21)探針 |
API2/MALT1融合基因t(11;18)探針 |
MALT1/IGH融合基因t(14;18)探針 |
IGH融合基因(CCND1,MAF,MAFB,FGFR3)探針 |
ALK、MET、ROS1基因探針 |
FGFR1,PDGFRA,PDGFRB基因探針 |
7號(hào)/8號(hào)染色體探針 |
8號(hào)/17號(hào)染色體探針 |
8號(hào)染色體計(jì)數(shù)探針(紅色) |
D7S522(7q31)基因探針 |
RB1(13q14)/ATM(11q22)基因探針 |
MAFB/IGH融合基因t(14;20)探針
二維碼掃一掃
【公司名稱】 廣州健侖生物科技有限公司
【】 楊永漢
【】
【騰訊 】
【公司地址】 廣州清華科技園創(chuàng)新基地番禺石樓鎮(zhèn)創(chuàng)啟路63號(hào)二期2幢101-3室
【企業(yè)文化宣傳】MAFB/IGH融合基因t(14;20)探針
腫瘤細(xì)胞的基因型和表達(dá)程序與細(xì)胞的表型、腫瘤微環(huán)境的作用、腫瘤的特質(zhì)、演變和治療抵抗有關(guān)。zui近幾年,腫瘤的基因組圖譜之類的研究繪制了腫瘤的遺傳景觀、幾千個(gè)腫瘤的表達(dá)形態(tài)、識(shí)別了驅(qū)動(dòng)突變、并根據(jù)特定的轉(zhuǎn)錄圖譜區(qū)分不同的亞型。但是腫瘤的遺傳狀態(tài)可以更為精確的進(jìn)行研究,而整塊組織的基因表達(dá)提供的信息是有限的,因?yàn)槟[瘤程序的表達(dá)決定因素、微環(huán)境的影響以及腫瘤內(nèi)基因的異質(zhì)性都被整體平均了。而單細(xì)胞轉(zhuǎn)錄組測序可以解決這些問題,但是同時(shí)也帶來了更多的花費(fèi)和更多的工作量,比如需要更多的時(shí)間從新鮮的腫瘤樣品當(dāng)中獲得單個(gè)細(xì)胞,尤其是一些罕見腫瘤。
2研究方法
? 10個(gè)IDH-A患者,流式分選腫瘤細(xì)胞,然后進(jìn)行單細(xì)胞RNA-seq。6個(gè)IDH-O患者,流式分選腫瘤細(xì)胞,進(jìn)行單細(xì)胞RNA-seq。
? 分析了從TCGA數(shù)據(jù)庫下載的76個(gè)IDH-O91個(gè)IDH-A膠質(zhì)瘤大量細(xì)胞的數(shù)據(jù),有550個(gè)差異表達(dá)的基因。并對(duì)比了單細(xì)胞測序的結(jié)果與大量細(xì)胞測序的結(jié)果進(jìn)行比較。
? DNA、RNA原位雜交。
3研究結(jié)果
? 分析IDH突變的膠質(zhì)瘤標(biāo)本單細(xì)胞RNA-Seq與大量細(xì)胞RNA-seq結(jié)果的差異基于細(xì)胞分群的方法:
1> 基因表達(dá)聚類分析,細(xì)胞分為膠質(zhì)瘤細(xì)胞、免疫細(xì)胞和少突膠質(zhì)細(xì)胞。
2> 由于膠質(zhì)瘤細(xì)胞常伴有大的染色體變異,我們使用每個(gè)細(xì)胞在大的染色體區(qū)域基因表達(dá)的數(shù)據(jù)來評(píng)估CNVs,然后通過外顯子測序和DNA FISH來驗(yàn)證CNV。使用基因表達(dá)和CNV來分類細(xì)胞的結(jié)果是*的,一共定義了5097個(gè)惡性細(xì)胞。
接下來將單細(xì)胞測序的數(shù)據(jù)與ATCG下載的大量細(xì)胞RNA-seq的數(shù)據(jù)進(jìn)行比較,尋找兩種腫瘤亞群基因表達(dá)的差異,并分析亞群特征性基因。
IDH-A和IDH-O因?yàn)槟[瘤微環(huán)境和遺傳學(xué)導(dǎo)致的基因表達(dá)的差異
其中一半的基因在單細(xì)胞測序中沒有差異,在大量細(xì)胞測序有差異,表明非惡性細(xì)胞導(dǎo)致的差異基因占了一半。免疫基因和神經(jīng)基因作為非惡性細(xì)胞的基因就是一些干擾因素。
? IDH-A與IDH-O惡性細(xì)胞基因表達(dá)的差異主要源于基因組的問題。
基于轉(zhuǎn)錄組的結(jié)果主要是有4類基因組的變異引起的,分別是1p/19q、CIC激活的基因、CIC抑制的基因和P53的靶基因。
不同腫瘤亞型的特征基因均有以上4類遺傳學(xué)影響導(dǎo)致
? 單細(xì)胞測序顯示IDH-A和IDH-O共享膠質(zhì)細(xì)胞譜系
之前研究認(rèn)為IDH-A和IDH-O分別以星狀膠質(zhì)細(xì)胞和少突膠質(zhì)細(xì)胞為主。通過特征基因和PCA分析IDH-A和IDH-O膠質(zhì)細(xì)胞的差異基因是很少的,他們的區(qū)別主要是因?yàn)檫z傳學(xué)和腫瘤微環(huán)境的差異,而并不是膠質(zhì)細(xì)胞的差異。
The genotypes and expressions of tumor cells are related to the phenotype of the cells, the role of the tumor microenvironment, the characteristics and evolution of the tumor, and the resistance to treatment. In recent years, the research of tumor genome map has drawn the genetic landscape of cancer, the expression pattern of thousands of tumors, identified the driving mutation, and differentiated different subtypes according to specific transcriptional patterns. However, the genetic status of cancer can be studied more accuray, while the information provided by gene expression in whole tissue is limited, because the determinants of tumor expression, the influence of microenvironment and the heterogeneity of tumor genes are all averaged. Single cell transcriptome sequencing can solve these problems, but at the same time, it also brings more cost and more workload. For example, more time is needed to get individual cells from fresh tumor samples, especially some rare tumors.
2 research methods
10 IDH-A with flow cytometry in tumor cells, and single cell RNA-seq. In 6 IDH-O patients, the flow cytometry was used to separate the tumor cells, and the single cell RNA-seq was performed.
Analyzed 76 IDH-O91 IDH-A glioma downloaded from the TCGA database of data, there are 550 differentially expressed genes. Compared with the results of a large number of cell sequencing, the results of single cell sequencing were compared.
DNA, RNA in situ hybridization.
3 research results
The difference analysis of IDH mutation in glioma samples and a large number of single cell RNA-Seq cell RNA-seq cell clustering method based on the results of:
1> gene expression clustering analysis, the cells are divided into glioma cells, immune cells and oligodendrocytes.
2>, because glioma cells are often accompanied by large chromosomal aberrations, we use the data of gene expression of each cell in large chromosome regions to evaluate CNVs, and then verify CNV by exon sequencing and DNA FISH. The results of using gene expression and CNV to classify cells were consistent, and 5097 malignant cells were defined.
Next, we compare the data of single cell sequencing with the data from a large number of cell RNA-seq data downloaded by ATCG. We find the difference of gene expression between two kinds of tumor subsets and analyze the characteristic genes of subpopulations.
Differences in gene expression caused by IDH-A and IDH-O because of tumor microenvironment and genetics
Half of the genes were not different in single cell sequencing, and there were differences in a large number of cell sequencing, indicating that half of the differential genes were caused by non malignant cells. The genes of immune and neurogenes as non malignant cells are some of the interfering factors.
The difference IDH-A and IDH-O gene expression in malignant cells mainly derived from the genome.
The results based on the transcriptional group are mainly caused by the variation of 4 genomes, which are 1p/19q, CIC activated genes, CIC suppressed genes and P53 target genes.
The characteristic genes of different tumor subtypes have 4 types of genetic influence
Single cell sequencing showed that IDH-A and IDH-O shared glial lineage
Previous research showed that IDH-A and IDH-O are star and oligodendrocytes. The difference genes between IDH-A and IDH-O glial cells were very few through the analysis of characteristic genes and PCA. Their difference is mainly due to the difference between genetics and tumor microenvironment, but not the difference of glial cells.